Elsevier Editorial System(tm) for Earth and

Planetary Science Letters

Manuscript Draft

Manuscript Number: EPSL-D-18-00954

Title: Origin of Planetary Magnetic Fields

Article Type: Letters

Keywords: solar wind, magnetic field of Earth, planetary magnetic field, ionosphere

Corresponding Author: Professor Simon Tseytlin, Dr. Sci.

Corresponding Author's Institution:

First Author: Simon Tseytlin, Dr. Sci.

Order of Authors: Simon Tseytlin, Dr. Sci.; David Tseytlin

Abstract: The exact explanation of the origin of magnetic field of the Earth and other planets does not yet exist. There are several hypotheses, theories and experiments, trying to find a solution to this problem, but the final, rigorous proof of these hypotheses does not exist. This article discusses the hypothesis that the main reason for the emergence and maintenance of the magnetic field is the ionosphere, containing the charges, which are recharged by the solar wind. This approach allowed us to explain a number of observed phenomena, including the inversion of the magnetic field of the Earth and planets. On the basis of these estimates the calculations of magnetic fields of other planets were carried out and demonstrated good agreement with measurements. There was a number of assessments carried out, which showed the correctness of this approach.

Suggested Reviewers: Alexey S Kashik Dr. Sci. in Geophysics askashik@mail.ru

Georgy N Gogonenkov Dr. of Sci. in Geophysics gogonenkov@yandex.ru

Yury A Popov Dr. of Science in Physics yupopov@dol.ru

Michael S Zhdanov Dr. of Science in Geophysics michael.zhdanov@utah.edu

Eduard Alperovich Ph.D. in Physics Alpedu@yahoo.com

Opposed Reviewers:

Dear Mr.Buffett,

Please see attached my article "Origin of Planetary Magnetic Fields". I am a Dr. of Science in Geophysics having worked for 7 years in the Russian Space Research Institute No. 1, where I worked on the theory of plasma rocket engines. Currently I am a Chief Scientist at Petroenergy Global LLC working on various problems in oil and gas industry.

Please see my resume on my website: www.tseytlin-consulting.com

Thank you for your time and consideration.

Thanks,

Dr.Simon Tseytlin

Chief Scientist, TSC & PEG LLC

As of yet there is no accurate theory explaining creation and maintenance of planetary magnetic fields. There are several hypotheses, theories and experiments trying to find a solution to this problem, but there is no final, rigorous proof of these hypotheses.

This article discusses the hypothesis that the main reason for the emergence and maintenance of this field is because of the charges in planet's atmosphere and ionosphere and their recharging by the solar wind.

1	Origin of Planetary Magnetic Fields
---	--

2	S. Tseytlin, Dr. of Sc., D. Tseytlin (Tseytlin-Consulting Inc.)
3	As of yet there is no accurate theory explaining creation and maintenance of
4	planetary magnetic fields. There are several hypotheses, theories and
5	experiments trying to find a solution to this problem, but there is no final,
6	rigorous proof of these hypotheses.
7	This article discusses the hypothesis that the main reason for the emergence and
8	maintenance of this field is because of the charges in planet's atmosphere and
9	ionosphere and their recharging by the solar wind.
10	Following are a number of estimates, which show the validity of this approach.
11	
12	1. Let's concentrate on Earth first. The solution for the magnetic field of a
13	rotating surface of a charged sphere is discussed in ([1], [2]). The
14	magnetic moment of a rotating sphere is
	$Oa^2 \vec{\omega}$

$$\vec{m} = \frac{Qa^2\vec{\omega}}{3c}$$

15 where:

16		R = 6,340,000 m - radius of Earth,
17		ω = 7.3 · 10 ⁻⁵ 1/sec - speed of rotation of the Earth,
18		c = 300,000,000 m/sec - speed of light.
19		It is known [1] that the Earth's magnetic moment is M = $8 \cdot 10^{25}$ units CGS.
20		Then, knowing the magnitude of the moment of Earth's magnetic field M,
21		we define the quantity required for this electrical charge.
22		
23		Q = $0.245 \cdot 1023$ CGS = 8.1×10^{13} C.
24		
25		It should be noted that a more accurate estimate of the charge can be
26		made based on the assumption that the charge is in a spherical layer of
27		Earth's surface and has a thickness equal to a few hundred kilometers,
28		giving approximately the same value 7.5 \cdot 10 ¹³ C.
29		
30		2. On the other hand it is known (for example [3]), that the Earth has a
31		charge on the order of:
32		$Q_{Earth} = 5.7 \cdot 10^5 C.$
	2	

34	It follows that it is not enough to create Earth's magnetic field.
35	Suppose that there is an additional charge of a different nature, creating it.
36	Let's determine its nature.
37	
38	3. We need to pay attention to the following circumstances:
39	
40	3.1 Earth has a strong magnetic field. Venus, Mars and most other planets have
41	magnetic fields hundreds of times less.
42	
43	3.2 Only Earth has air and water! This allows us to make the hypothesis that
44	the Earth's magnetic field is due to the charge of the clouds. Its value is
45	enormous.
46	It is known that a lightning discharge power reaches 100 Megawatt and
47	every second around the Earth there happen 46 lightning discharges.
48	Let's estimate the charge of the clouds, assuming that the system
49	consisting of clouds and the surface of the ground forms a spherical

50 capacitor. It is known that: $Q_c = C \cdot U$, where the capacity of a spherical

51 capacitor is:

$$C = \frac{4\pi E_{ps} R_1 R_2}{R_1 - R_2}$$

52	where:
53	R_1 , R_2 – outside and inside radius of the sphere: R_1 = 6350 km, R_2 =
54	6340 km,
55	$E_{ps} = 8.85 \cdot 10^{-12}$,
56	It should be noted that, given that water has relative permittivity of 80,
57	the capacity of the cloud layer may be higher by one or more orders.
58	That yields us approximately C = (0.45-4.5) Farads.
59	Let's estimate the potential difference U between the clouds and the
60	Earth's surface. We take E = (10-30) Kilovolt to 1 cm as voltage of air
61	breakdown. Then:
62	$U = E \cdot H = 3 \cdot 10^6 \cdot H \text{ Volt,}$
63	where
64	H = $(1-10) \cdot 10^3$ m - height of the clouds.

65	The result is an upper bound of the charge of the clouds on Earth:
66	$Q_{1 \text{ max}} = C \cdot E \cdot H = 4.5 \cdot 3 \cdot 10^{6} \cdot 10^{4} = 1.35 \cdot 10^{11} \text{ C}.$
67	It should be noted, that deposits of iron and nickel in the upper part of
68	the crust, can also increase the magnetic field of the Earth.
69	As a result, the charge of the clouds can create a sufficiently strong
70	magnetic field commensurate with the Earth's magnetic field.
71	4. The following additional estimate of Earth's magnetic field gives
72	approximately the same result.
73	The work [4] contains an assessment of the charge densities of
74	thunderclouds.
75	At any given time in the world there are simultaneously about a thousand
76	storms, the average frequency of lightning discharges is estimated as 46 per
77	second. The storms are unevenly distributed on the planet's surface.
78	As a result, of calculations and experiments given in the work, the density
79	of the charge is in the range q = (9-280) \cdot 10 ⁻⁹ C/m ³ . Then, taking the
80	amount of cloud cover in the form V = $4\pi \cdot R^2 \cdot H$, where H = 1000 m -
81	thickness, we get:

82
$$V = 50 \cdot 10^{17} \text{ m}^3$$

83 Then we obtain an estimate of the charge of storm clouds on Earth, which 84 varies in the range of

85
$$Q_1 = V \cdot q = (4.5-140) \cdot 10^{10} C$$

Assuming that the storm clouds take up one-tenth of the sky, and they have

the lowest charge density, we get a lower estimate of the charge equal to

88 $Q_{1 \min} = 4.5 \cdot 10^9 \text{ C}.$

89 The maximum estimate will then be equal to

90
$$Q_{1 \max} = 1.4 \cdot 10^{11} \text{ C},$$

91 which practically coincides with the estimate obtained in the previous92 section.

93

This evaluation indicates that the charges inside Earth's atmosphere can be a
major contributor to Earth's magnetic field. However, they are not enough.
Additional contributors could be the presence of iron in the Earth's crust and
charges in the Earth's ionosphere.

98

99	5. One of the missing links in determining the Earth's magnetic field may
100	be the effect of the upper layer of the earth's crust to a depth of 15
101	kilometers, where the iron and nickel deposits are located, which have
102	a temperature below the Curie point (equal to 768 degrees Celsius).
103	The deposits of iron and nickel make up 5% of the total weight of the
104	Earth's crust and 30% of its volume. They may influence the magnitude
105	of the magnetic field of the Earth, increasing it by a few times. Note
106	that the total amount of iron in the world has not changed over time.
107	Even though some was removed from the Earth's crust, it is still on its
108	surface.
109	
110	6. This theory of occurrence of Earth's magnetic field can also explain the
111	presence and magnitude of the magnetic field of other planets.
112	
113	6.1. This is especially true of Venus. Venus is the most Earth-like planet that
114	does not have a strong magnetic field, but the internal structure is
115	thought to be very similar. Venus has an ionosphere and an atmosphere,
116	consisting mainly of CO_2 gas, which have a certain electrical capacity,

117		and which are constantly recharged by the solar wind like on Earth. It
118		should also be noted that the length of day on Venus is more than 243
119		times greater than on Earth. Thus the velocity of charges in the
120		ionosphere of Venus is hundreds of times slower than in the Earth's
121		ionosphere, which explains why the magnetic field of Venus is less than
122		the magnetic field of the Earth by 300 or even more times.
123	6.2.	Consider Mercury. It is well known that its magnetic field is more than a
124		hundred times smaller than the Earth's one. On the other hand the
125		length of its day is over 58 times longer than on Earth, and its radius is
126		2440 km. It follows that the velocity of negative charges in the
127		ionosphere of Mercury is 152 times slower than the Earth's ionosphere.
128		This may explain the decrease in its magnetic field, as compared to
129		Earth.
130		The site [7] indicates that the measurement of the magnetic field of
131		Mercury is 0.006 of the magnetic field of the Earth. That means it's 150
132		times smaller, which coincides with our assessment!
133	6.3.	Let's consider now the magnetic field of Jupiter. It is known that Jupiter
134		has a magnetic field approximately 20 times greater than the Earth.

135		It is known that the radius of Jupiter is 11 times greater than the radius
136		of Earth, and the rotational speed is 2.4 times greater. So the velocity of
137		the charges in the ionosphere of Jupiter in 26.4 times greater than the
138		Earth's ionosphere. Measurements have shown that the magnetic field
139		of Jupiter is 20-50 times greater than the magnetic field of the Earth. In
140		this case, the magnetic field of Jupiter calculated via the present theory
141		also gives good agreement with the measurement!
142	6.4.	Mars seems not to be subject to existing theories. The magnetic field of
143		Mars is extremely small - more than 500 times weaker than the
144		magnetic field of Earth. The size of Mars is only half smaller and its
145		rotational speed is similar to Earth. Therefore all the conditions for the
146		operation of the mechanism similar to hydrodynamic dynamo should
147		similarly create a magnetic field. However, the difference in the
148		observed magnetic field is due to the actual current lack of Mars's
149		atmosphere and ionosphere. The pressure of the atmosphere at the
150		surface of Mars is 160 times smaller than the Earth. This proves that the
151		source of the magnetic field depends on the presence of the
152		ionosphere, because the rest of the parameters of the planets are
153		somewhat similar. Analysis of tectonic rocks shows that at some time in

154	the past, the magnetic field of Mars was quite noticeable and
155	demonstrated reversal of the magnetic field. We know that the loss of
156	Martian atmosphere is relatively recent, and the process still continues
157	right now. The lack of atmosphere and magnetic field are the main
158	reason for the absence of life on Mars, but does not rule out its
159	existence in the past. There exist several hypotheses of the cause of the
160	loss of Martian atmosphere, but we will not dwell on them.
161	
162	The fact is that in the absence of an atmosphere and ionosphere a planet's
162 163	The fact is that in the absence of an atmosphere and ionosphere a planet's magnetic field cannot exist.
163	magnetic field cannot exist.
163 164	magnetic field cannot exist. Thus we have another indication that magnetic fields of planets exist due to
163 164 165	magnetic field cannot exist. Thus we have another indication that magnetic fields of planets exist due to their atmosphere and ionosphere. If the hydrodynamic dynamo mechanism

7. Let's put the data on several planets in one table.

Planet	Diameter	Rotation	Relative	Relative
	[km]	[hr]	Magnetic	Atm.
			Field	Pressure

Mercury	4879	1411	0.006	0.001
Venus	12104	5851.2	0.003	93
Earth	12742	24	1	1
Mars	6779	24.6	0	0.06
Jupiter	139822	9.92	25	12

171		Table 1
172	Fr	om Table 1 we can make the following conclusions:
173	7.1.	On planets with no atmosphere and no ionosphere, the magnetic field is
174		either negligible or not present (Mercury, Mars).
175	7.2.	From the comparison of Earth and Mars, if the hydrodynamic dynamo
176		hypothesis were right, then they would have both had a magnetic field.
177		But only Earth has one! So the hydrodynamic dynamo hypothesis is
178		incorrect.
179	7.3.	Radiuses and rotational speeds of the planets determine the velocity of
180		the charges in the ionosphere. And hence the current.
181	lt	follows that on the planets that have an atmosphere and ionosphere,
182	w	here the magnetic field is generated according to our hypothesis - from
183	th	ne solar wind, its strength should be proportional to the linear velocity of
184	th	ne ionosphere, so we could multiply the radius by the angular speed!

185	Indeed Venus, which has a radius slightly smaller than Earth, but with
186	rotating 243 times slower, the strength of the magnetic field is nearly 300
187	times smaller. Jupiter, which has a radius of 11 times larger than the Earth
188	and rotating with an angular velocity 2.4 times faster than the Earth, the
189	magnetic field is ~25 times greater.
190	These estimates confirm the correctness of our hypothesis that the mechanism
191	of creation of the Earth's magnetic field is by moving charges in the ionosphere,
192	which are created by solar wind.
193	Hence, our hypothesis of the emergence and maintenance of the Earth's
194	magnetic field is a better explanation then the hydrodynamic dynamo
195	hypothesis of its origin.
196	8. Note that the present hypothesis about the cause of Earth's magnetic
197	field makes it easy to explain not only the origin of the field, but also
198	the geomagnetic field inversion that occurs every several hundred
199	thousand years in a stochastic manner.
200	Analysis of the Earth's magnetic field, conducted with the help of satellites
201	and modeling has shown that the solar wind currently bends around it,
202	because it mainly contains electrons with negative charge (Fig. 1). In case of

a positive charge in the solar wind the form of Earth's magnetic field would

have been different.

205	
206	Fig.1 – Magnetic field of Earth
207	Solar wind is a stream of charged plasma, ejected from the surface of the
208	Sun that overcomes the gravity and the magnetic attraction of the sun and
209	propagates in all directions. Part of this wind reaches the Earth's
210	ionosphere and charges it with a negative charge. The ionosphere contains
211	the so-called E and F layers [6] (Fig. 2) created by the solar wind, located in
212	the region of 90 to 500 km above the surface of the Earth and having
213	electron density in the range of $N_e = (1.5-30) \cdot 10^5$ per cubic centimeter [3].
214	The average value of the electron density there is $N_e = 10^6 \text{ 1/cm}^3$.

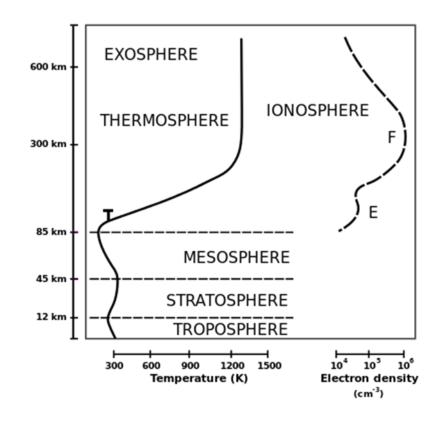


Fig. 2 – Distribution of electron density and temperature vs. height.

As the thickness of the E and F layers is up to H = 500 km, it is easy to

219
$$Q = Q_e \cdot R^2 \cdot 4\pi N_e \cdot H = 1.6 \cdot 10^{-19} \cdot 41 \cdot 10^{16} \cdot 12.6 \cdot 10^6 \cdot 5 \cdot 10^7 = 4.14 \cdot 10^{13} C$$

220 Where
$$Q_e = 1.6 \cdot 10^{-19}$$
 C is the charge of an electron.

221 We have demonstrated that the charge of the E and F layers of the ionosphere,

- and considering the additional effect of the iron contained in the upper layer of
- the Earth's crust, would be sufficient to establish, or at least make a major
- contribution to the formation of Earth's magnetic field.
 - 14

225	It should be noted that due to the constant ejection of negatively charged
226	particles as part of the solar wind, the Sun gradually gains an excess
227	positive charge. This leads us to the fact that periodically, every few
228	hundred thousand years, the sun begins to emit positively charged gigantic
229	coronal mass ejections (predominantly due to their content of positive ions
230	and protons), dimensions reaching several thousand kilometers. Therefore
231	the solar wind starts bearing a positive charge, and when it reaches Earth it
232	recharges its electric and magnetic fields.
233	As a result through some period equal several thousand years, the Sun again
	becomes neutral in charge and starts letting out negatively charged wind again.
234	becomes neutral in charge and starts letting out negatively charged while again.
234 235	This results in the next inversion of the magnetic field of Earth. The recharge of
235	This results in the next inversion of the magnetic field of Earth. The recharge of
235 236	This results in the next inversion of the magnetic field of Earth. The recharge of the magnetic field of Earth can occur as well as a result of collision of Earth with
235 236 237	This results in the next inversion of the magnetic field of Earth. The recharge of the magnetic field of Earth can occur as well as a result of collision of Earth with big comets which can be charged either negatively or positively, depending on
235 236 237 238	This results in the next inversion of the magnetic field of Earth. The recharge of the magnetic field of Earth can occur as well as a result of collision of Earth with big comets which can be charged either negatively or positively, depending on the sign of the charge of the star which the comet encountered before it.
235 236 237 238 239	This results in the next inversion of the magnetic field of Earth. The recharge of the magnetic field of Earth can occur as well as a result of collision of Earth with big comets which can be charged either negatively or positively, depending on the sign of the charge of the star which the comet encountered before it. So the process of inversion of the magnetic field of Earth can be explained easily

243	explanation of emergence of the magnetic field of Earth via the
244	mechanism of thermal convention in its liquid magma. Such hypothesis
245	is based on the analogy of the mechanism of emergence and
246	maintenance of a magnetic field of the Sun.
247	However a simple analysis shows that in the conditions of Earth this
248	mechanism can't work because of a difference of scales and magnitudes of
249	density and viscosity of the fluids and gradients of temperature existing on
250	the Sun and Earth. It is known that a large gradient of temperature and
251	presence of low viscosity fluid is necessary for effective thermal convection.
252	But gradient of temperature of terrestrial magma from the top part
253	adjoining the crust (700 $^{\circ}$ C), and the deeper part, adjoining the kernel
254	(6000 $^{\circ}$ C) over the distance about 3000 km, gives the top assessment of
255	average gradient of -2 $^{\circ}$ C per kilometer.
256	It is less than in crust of Earth and considering that viscosity of magma, even at a
257	temperature of 4000 $^{\circ}$ C is very high – it is possible to draw a conclusion that
258	under these conditions in Earth there can NOT be considerable thermal
259	convection!

260	It should be noted also that maintenance of a magnetic field of Earth requires a
261	lot of energy. As any electromagnetic generator has to use a rotating rotor, the
262	role of which plays the Earth. Thus there are forces and inductive currents
263	braking it. It needs additional energy to maintain constancy of speed of its
264	rotation, or it has to slow down, losing rotational speed. But over millions of
265	years Earth's rotational speed almost didn't change.
266	This proves that on Earth there are insufficient conditions for operation of
267	the mechanism of a hydro magnetic dynamo.
268	For comparison, on Sun temperature changes over depth from 6000 to
269	15,000,000 $^{\circ}$ C, and the fluid is represented by plasma (the ionized gas)
270	density of which is one hundred times less than magma's, and viscosity of
271	magma is one thousand times lower than viscosity of plasma. Under these
272	conditions there can in fact exist strong magnetic fields thanks to the
273	mechanism of a hydrodynamic dynamo.
274	10. Consider the following as further proof that magnetic field of Earth is
275	due to the sources outside of its volume. The Earth's crust up to about
276	15 kilometers deep has the condition that temperature is less than the
277	Curie's point, and this is where the fields of iron and nickel lie, making

278	about of 5% the crust's volume. When magnetic field of Earth is
279	measured along its surface, it is greater in the regions where iron and
280	nickel are present. But if the source of magnetic field is internal, the
281	opposite effect should have been true, as metal would shield the field.
282	Therefore the hypothesis about the sources of magnetic field of Earth
283	being of external nature is true. And consequently, the version and the
284	carried-out estimates about location of these sources in the
285	atmosphere and an ionosphere of Earth are correct.
286	11. We will note that by means of the offered hypothesis it is easy to
287	explain discrepancy between the geometric axis of Earth and the axis of
288	the magnetic field of Earth (shift of magnetic poles).
289	This phenomenon arises because of an inclination of a geometrical axis of
290	Earth to Earth orbit plane of 23.4 degrees. In this connection the solar wind
291	falls on Earth surface at an angle.
292	12. Thus only the charges brought from the outside (solar wind or comets)
293	and the charges resulting from formation of drops of a rain in clouds
294	can constantly recharge the atmosphere and an ionosphere, allowing to
295	create and support the magnetic field of Earth.

296	And the magnetic field of the atmosphere of Earth can serve as the initial
297	starter of creation of the Magnetic field of Earth, originally braking and
298	guiding electrons of the Solar wind at a tangent to Earth surface.
299	The carried-out estimates showed that the total charge of Earth, clouds and
300	the ionosphere can provide emergence and existence of the magnetic field
301	of Earth. And the charges arising in atmospheric clouds constantly are
302	supported by the water circulation in the nature, and the charge of
303	ionosphere is constantly recharged by the streams of charged particles
304	coming from the Sun.
305	Bibliography
305 306	Bibliography Physics for Scientists and Engineers, Volume 2, by Raymond
306	1. Physics for Scientists and Engineers, Volume 2, by Raymond
306 307	 Physics for Scientists and Engineers, Volume 2, by Raymond Segway, John Jewett
306 307 308	 Physics for Scientists and Engineers, Volume 2, by Raymond Segway, John Jewett Introduction to Electrodynamics, 3rd Edition; Prentice Hall –
306 307 308 309	 Physics for Scientists and Engineers, Volume 2, by Raymond Segway, John Jewett Introduction to Electrodynamics, 3rd Edition; Prentice Hall – Chapter 5, Post 36. Griffiths, David J.
306 307 308 309 310	 Physics for Scientists and Engineers, Volume 2, by Raymond Segway, John Jewett Introduction to Electrodynamics, 3rd Edition; Prentice Hall – Chapter 5, Post 36. Griffiths, David J. Capstones in Physics: Electromagnetism, 1999 Oregon State

- 3145. Venus, from Wikipedia, free encyclopedia3156. Ionosphere, from Wikipedia, free encyclopedia.